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A UNIFIED APPROACH TO DIRECT AND INVERSE 
BOUNDARY LAYER SOLUTIONS 
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SUMMARY 
A unified approach is presented for solving the two-dimensional incompressible boundary layer equations. 
Solutions are obtained for direct and inverse options using the same equation formulation by a simple 
interchange of boundary conditions. A modified form of the mechul function scheme obtains inverse 
solutions with specification of transformed wall shear, skin friction coefficient or displacement thickness 
distributions. Direct solutions may be obtained without altering the block tridiagonal structure of the system 
by simply requiring no corrections on the streamwise pressure gradient parameter. Fourth-order spline 
discretization approximates normal derivatives with two- and three-point backward differences approxima- 
ting streamwise derivatives, yielding a fully implicit solution method. The resulting splinelfinite difference 
equations are solved by Newton-Raphson iteration together with partial pivoting. The results of the study 
demonstrate the importance of proper linearization of all equations. The successful use of spline discretiz- 
ation is also tied to the use of strong two-point boundary conditions at the wall for cases involving reversed 
flow. Numerical solutions are presented for several non-similar flows and compared with published results. 
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INTRODUCTION 

The calculation of boundary layer flows is usually divided into two distinct categories, direct and 
inverse methods. The direct method, which invoives specifying a pressure or inviscid velocity 
distribution over the body, has been widely used for many years. The pioneering work of Smith 
and Clutter' is an excellent example of a direct boundary layer solution. This approach performs 
well for attached shear layers, but cannot treat separating boundary layers because of the 
singularity that exists at the separation point when the edge velocity is ~pecif ied.~.~ This 
singularity prevents the use of the direct method for regions of backflow, including separation 
bubbles and trailing edge separation. 

To obtain solutions for separated boundary layers, several types of inverse methods have been 
developed. By specifying distributions of displacement thickness, wall shear or similar quantities, 
and obtaining the streamwise pressure distribution, these methods eliminate the singularity in the 
boundary layer equations at separation. The equations of motion may then be integrated through 
the region of separation under the condition that the extent of separation is small (backflow 
velocities less than 10% of the edge velocity). The boundary layer equations remain valid under 
the assumption that the shear layer is thin (dd/dx+ 1). For shear layers which violate this 
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condition, upstream influences become significant and the boundary layer equations alone can no 
longer accurately describe the flow. 

Catherall and Mangler4 originated the inverse procedure, specifying a displacement thickness 
distribution near the separation point to obtain regular solutions into a region of backflow. Once 
inside the separated zone, however, the procedure developed instabilities which required a 
progressive increase in convergence limits as the solution continued downstream. Since the 
boundary layer equations are parabolic, these instabilities arise from marching in a direction 
opposite to the streamwise velocity. 

Reyhner and Flugge-Lotz’ developed the FLARE approximation which eliminates these 
instabilities by setting all streamwise convection terms to zero inside the region of backflow. The 
x-convective terms are small in this region for thin separated zones, so this introduces only minor 
errors while allowing a forward-marching procedure to continue through the separated region. 
Since it was presented, the FLARE approximation has been a standard part of the majority of 
inverse methods which seek to resolve regions of separated flow. 

An iterative procedure developed by Williams6 improved on the FLARE approach by making 
repeated downstream and upstream passes through the separated zone. On the first pass, FLARE 
is used to define the extent of the separation zone. An upstream pass, using a direct solution, is 
made inside the region of backflow to determine the convective terms. The downstream pass is 
then repeated without FLARE, using the results obtained from the upstream solution. This 
process is repeated for several cycles until convergence is reached. The DUIT 
(downstream-upstream iteration) procedure produces more accurate velocity profiles for the 
separated region and has been used successfully by Cebeci et al.’ A drawback inherent in the 
iterative process is that only closed separation bubbles or separated regions which reach an 
asymptotic state can be treated. 

A variety of inverse studies have appeared in the literature.’- l 6  The quantities specified by these 
methods vary, with the majority specifying the Reynolds scaled displacement thickness or the wall 
shear. Most are able to specify only one quantity. The work of Cebeci” is one significant 
exception. Cebeci considers the specification of skin friction coefficient and displacement thickness 
with a minimum of reformulation. An additional noteworthy paper is the study by Edwards and 
Carter,16 where a unified approach to boundary layer solutions is presented in connection with 
interacting boundary layer theory. In Reference 16, displacement thickness is used to link the 
quasi-simultaneous viscous-inviscid interaction procedure. 

This study presents a unified approach to the numerical solution of the direct and inverse 
formulations of the laminar boundary layer equations using an implicit spline/finite difference 
discretization scheme. The method is formulated to allow the specification of transformed wall 
shear, skin friction coefficients or displacement thickness distributions for inverse solutions by 
simply switching the appropriate boundary conditions. This idea is similar to the work of 
Cebeci.15 The current study goes beyond that of Cebeci by also allowing direct or inverse 
solutions to be obtained with the same technique. Thus the present work is truly unified in 
handling direct as well as shear or displacement thickness inverse solutions with the same 
formulation, requiring only minor changes in the boundary conditions depending upon the 
desired solution. 

The present scheme applies fourth-order splines, as derived by Rubin and Khosla,” to 
approximate the normal derivatives in the boundary layer equations, with two- and three-point 
backward differences to discretize the streamwise derivatives. The differencing scheme was chosen 
to yield a fully implicit solution method. The splines also provide increased accuracy for a given 
number of mesh points. (All spline notation is in the form given in Reference 17.) 

The mechul function method, originally devised for inverse methods by Cebeci and Keller,’* is 
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used in a modified form described by Kaufman and Hoffman. This modified form is necessary 
because of the use of the spline discretization. The FLARE approximation is employed in 
separation zones to prevent development of instabilities inherent in marching downstream 
through regions of reversed flow. 

Following discretization, the non-linear spline/finite difference equations are linearized and 
solved using Newton’s method. The resulting linear block tridiagonal matrix system for the 
solution vector corrections at each streamwise station is solved using L-U decomposition. Partial 
pivoting is necessary in the block tridiagonal solution process to prevent the build-up of round-off 
errors. 

GOVERNING EQUATIONS 

The governing equations for a steady, incompressible, two-dimensional laminar boundary layer in 
dimensionless, Reynolds number scaled form are 

continuity 
au av 
-+-=0, 
ax ay  

au a u  a p  au2 

ax ay ax ay2’ 
x-moment um u-++- = - - + __ 

(3) 
aP -=O, 
ay  

y-momentum 

and the Euler equation applied at the body surface gives 

dPe due 
-U,-. 

dx dx 
The usual boundary conditions are 

impervious wall $(x, 0) =0, (44 
no-slip u(x, 0) = 0, (4b) 

far field u(x, Y)+l as Y+w, (44 

where the stream function is defined by 

The introduction of the stream function identically satisfies continuity, equation (1). 
For a direct solution of the boundary layer equations, an edge velocity or pressure coefficient 

distribution is typically specified. Inverse solutions of the boundary layer equations can be 
obtained by specifying either a wall shear (or function of the wall shear) or a displacement 
thickness distribution. The form of the resulting boundary conditions will be discussed later. 

To capture boundary layer growth, the governing equation (1H3) and the boundary conditions 
(4) and (5) are transformed using the Levy-Lees pseudo-self-similar transformation given by 
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A psuedo-self-similar stream function is defined as 

+(x, Y 1 =&Of (t, v). (7) 

The introduction of equation (7) also removes the leading edge singularity and allows a self- 
starting solution. 

Transforming the velocity components and the x- and y-derivatives, equation (2) becomes 

f q q  +I&, + B(1 -fi) =25 Cf,f, --f<f,,I, (8) 

where B is the streamwise pressure gradient parameter defined as 

By setting 5 =0, equation (8) reduces to the Falkner-Skan equation, with no dependence on 5. The 
ODE may be solved for any Falkner-Skan solution, or a starting solution may be obtained for a 
non-similar flow. 

The FLARE approximation is usually applied to the untransformed x-momentum equation (2) 
defining a FLARE coefficient 8: 

au au du azu  eu-+ v - = u , ~ + - - ,  ax a y  dx ~ Y Z  

where 

e={  1, 2420, 
0, UGO. 

Horton,l however, notes that when using psuedo-self-similar variables this approach is too 
restrictive, since it affects the self-similar as well as the non-similar solutions. Since the streamwise 
convection term introduces the instabilities in regions of reversed flow, only the analogous 
transformed term needs to be removed. The FLARE coefficient is applied only to the&& term, 
and equation (8) becomes 

f,,+&+B(1 --f,2)=2t cef,f,,-f<f,,l, (10) 

where 

Here, when 5 is set to zero for a Falkner-Skan solution, no &terms remain which would interfere 
with obtaining the self-similar solution that is sought. Horton's form is used in the present work. 

The transformed boundary conditions are 

f ( t , O )  =f,(t, 0) = 0, (1 1 4  

f,(t,v)=l as ?+?m. (1  1b) 
For an inverse solution, an additional boundary condition is added which consists of specifying 

wall shear, displacement thickness or another quantity. Since the streamwise pressure gradient 
parameter is unknown, the system is overdetermined. To close the system, Cebeci and Keller" 
introduce an additional differential equation by letting 

B e )  = P( t ,  ?) 
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and then requiring 

apjaq = 0. (12) 
Equation (12) provides the additional relation needed to close the system of equations for an 
inverse solution. 

While this formulation of the mechul function method was applied in Reference 18, Kaufman 
and Hoffman' discovered that, when applying a spline/finite difference scheme (particularly 
spline S'(4, 0)17) to the mechul function method, equation (12) resulted in a singular matrix. This 
singularity was due totally to the form of the spline relations. To prevent this problem, the 
auxiliary equation is changed to 

a2p/aq2 = 0, 113) 
with equation (12) enforced through the boundary conditions. 

order equations. The complete set, including the auxiliary mechul function equation, is 
In order to apply spline S'(4,O) repeatedly, the momentum equation is written as three first- 

f ,=u  , 
u, = G, 

G,+jC+p(l -~')=24:[0uur- G&], ( 144 

8,, = 0, (144 

f (5 ,O)  = u(5,O) = 0, (154 

u(t,v)+1 as ?+?m, (134 

with the boundary conditions 

while equation (12) is enforced at the wall or the far field as needed. 
The system of inverse boundary layer equations can also be used for a direct boundary layer 

solution. For the standard direct boundary layer problem, the streamwise pressure gradient is 
given, either explicitly or by specifying u, or C,, and 8 is treated as a fixed parameter at each 
streamwise station. 

For the system of equations considered here, p is a variable to be obtained during the solution 
process. Thus, to solve a direct case using this system, an additional boundary condition must be 
specified which sets 8 at each streamwise station. The appropriate boundary conditions are then 

f (t,O)=u(5, O)=O, ( 164 

Here, equation (16c) takes the place of the inverse boundary condition discussed previously. 
For the additional boundary condition required by an inverse solution, three possibilities are 

treated in this paper (two for skin friction and one for displacement thickness). 
For the inverse solutions of Keller and Cebeci,8*18 where the mechul function is introduced, 

Horton" and Kaufman and Hoffman" specify the self-similar form of the wall shear, given byfi 
(where primes denote differentiation with respect to q). This is by far the simplest of the inverse 
boundary conditions when the equations are cast in similarity form. The boundary condition 
takes the form 

fl: = G ,  = S(<). (17) 
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Although equation (17) is the simplest condition to apply, it is not the most useful. From a 
physical standpoint, specification of a skin friction coefficient is more plausible. Here, a skin 
friction coefficient with one of two possible definitions is specified: 

(1) skin friction coefficient based on the reference velocity, 
,* 

(2) skin friction coefficient based on the boundary layer edge velocity, 

Transforming these definitions to similarity variables yields 

When either skin friction coefficient is specified,fi no longer remains constant. Using equation 
(18), the boundary condition onf; is thus obtained as a function of Cfe or Cfm, u, and 5 :  

f;=Gw=F(Cf, u,, 0 (19) 

G,--F=O. (20) 

The boundary condition then takes the form 

The displacement thickness may also be specified, using a boundary condition at the far field 
instead of the wall condition used for the two previous inverse conditions. The standard definition 
of the displacement thickness is 

6* = 1; (1 -:) dy. 

Scaled and transformed to similarity variables, equation (21) becomes 

From this result, a transformed displacement thickness can be defined as 

8* = IoVm (1 -j‘) dq. 

Integrating across the boundary layer, the transformed displacement thickness provides the 
required inverse condition at the far field: 

A 

f+q-6* as q-+qm. (24) 

DISCRETIZED EQUATIONS 

Since the discretization used here is almost identical to that in Reference 19, only the highlights in 
the present case will be given. The <-derivative in equation (14c) is first discretized using the 
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generalized backward difference formula 

(%/aOi=agi+bgi- 1 +cgi-z ,  
and then the q-derivatives in equation (14) are replaced by spline approximations. At nodal point 
( i , j )  the result is 

15=uij, 

l y j =  Gij ,  

OijCl,,~,f,+ C,,,AjGij+ pi,(.$- 1) + C3,,Gij+ OijC,,,, (254 

L$ = 0, (25d) 
where C,, C , ,  C3 and C ,  are functions of t i ,  a, b, c, andx- , 

In equation (25) there are eight unknowns, and hence four tridiagonal spline relations are 
required to close the system. S'(4,O) is used to relate f f  tof, 1" to u and l G  to G; then S2(4, 0) is used 
to relate LB to p. The expressions for S'(4,O) and S2(4, 0) are given by equations (15) and (16) of 
Reference 19. The number of unknowns is then reduced to four by the use of equations (25aH25d) 
to eliminate If, l", IG and LS. The result is a block tridiagonal system for the unknownsf, u, G and 
p. Because of the non-linearity of the momentum equation, the entire system of equations must be 
linearized for solution by the Newton-Raphson technique. 

The block tridiagonal correction equations may be written in the following matrix form 
( i  subscript understood): 

ui- , and ui - , .  

BjZj- + A j Z j + C j Z j + ,  =Rj  (26) 

(27) 

for 2 6 j < N ,  where N is the number of intervals in q and 

Z j =  [ S f ,  SU, SG, S/?]T. 

As in Reference 19, A j ,  Bj and Cj are 4 x 4 matrices whose elements are obtained from the four 
correction equations, and Rj is a four-component column vector of known quantities from the 
right-hand sides of the correction equations. 

To close the block tridiagonal system, four boundary conditions must be supplied at both the 
wall and far field. When an insufficient number of physical conditions exists, numerical conditions 
obtained from two-point spline relations are added to the system. The numerical implementation 
of the boundary conditions for the inverse shear and displacement thickness methods and the 
direct method will now be covered in detail. 

Using index notation (with i understood), the boundary conditions common to both the direct 
and inverse formulations are 

fi =o, 
u, =o, 

The remaining boundary condition depends on the formulation. 

Wall shear boundary conditions 

The three possible boundary conditions in the wall shear case are as follows: 

G ,  - S = 0, f specified, 
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or 

G, -+J(2 ( )CfcJ (Re)=0 ,  CfoJ(Re)  specified, 

or 

The system at the wall is complete for any of the shear cases by the specification of the derivative 
condition on 8:  

B&, '1) = 0. 

8 2  - 81= 0. (30) 

This equation, when approximated by a two-point spline relation, reduces to 

Since only one boundary condition exists in the far field, the two-point relation, equation (16) of 
Rubin and Khosla,17 must be used three times, once each forf, u and G. Since G and its normal 
derivatives approach zero exponentially rapidly near the boundary layer edge, the difference 
GG+ - GK is expected to be small and hence is neglected, leaving for the G condition 

The first and second derivatives in these equations can be eliminated by substitution from the 
appropriate equations. 

Displacement thickness boundary conditions 

When the displacement thickness method is used, the boundary conditions described in the 
previous subsection must be altered, both at the wall and far field. The inverse condition for the 
displacement thickness method is implemented at the boundary layer edge. Thus equation (20) 
must be replaced by a two-point spline relation and one spline condition at the far field must be 
discarded to allow for the condition on 6*. 

The two-point spline relation chosen for the wall is 

This condition is identical to one of the conditions applied at the far field for the shear case. In the 
far field, the spline condition off is replaced by 

(334 fN+ 1 -VN-+ 1 +$* = O  
or 

depending upon whether the transformed or uritransformed displacement thickness is specified. 

Direct boundary conditions 

For the direct case, a slightly different set of boundary conditions is used. At the wall, the 
conditions are identical to those used for the displacement thickness method. At the boundary 
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layer edge, two physical conditions are given: equation (15b), which is always specified regardless 
of method, and equation (16c). Two-point spline relations are required to close the system. 

It is apparent, considering the previous discussion, that only minor modifications need to be 
made to the boundary conditions even though a range of methods is treated. This is quite 
surprising and also quite helpful, since it allows the various methods to be combined into a single 
computer code with little difficulty. 

It should also be noted that while only minor changes to the boundary conditions are required, 
very few other possibilities exist when using the two-point spline relations. The conditions 
obtained in the above sections consist of all available conditions for the current problem without 
further differentiating the momentum equation (which would greatly increase the complexity of 
the boundary conditions). 

Linearized numerical boundary conditions 

For the transformed wall shear case, the correction form of equation (29a) is simply 

6Gl =0, 

since S(t) is given constant at each streamwise station. When Cfe or Cfm is specified, the function F 
in equation (19) varies as the solution converges, since it is dependent upon 5 and, for the C,_ case, 
u,. Thus F must be linearized. Equation (20) can be written in linearized form as 

6G1 -(F,,dC, + FUe6u, + F56t)  =O, (34) 
where 6Cf is zero since C, is specified. The partial derivatives of F, F ,  and FUe, for specified Cfm are 
easily found from the definition of F. 

The correction St is obtained from the definition of t, equation (6a): 

Ax 
2 

s<i=-du,'. 

The correction due is obtained from equation (41), the relation used to update u, after each 
iteration (discussed later in this paper). The result is 

Equations (35) are solved for S t i  and bu,, in terms of $Pi, yielding 

where 

Ax 
t ,  = - U e i ,  

8 
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Upon substitution of equations (36) into equation (34), the correction boundary condition takes 
the form 

where 

For the displacement thickness method, a similar procedure is followed, except that the 
resulting boundary condition contains 6finstead of 6G. The final form is given by 

where A is given by equation (37b) and F ,  and F,,. are the appropriate partial derivatives for the 
displacement thickness boundary condition. 

Linearization of the associated two-point spline relations is straightforward. The resulting 
system of corrections at the boundaries can be written in block matrix form for the cases 
considered here as follows: 

AiZi  +C,Z,=Ri (39) 

(40) B N  + ZN + A N  + i ZN + 1 = R N  + 1 .  

The coefficients in equations (39) and (40) are 4 x 4 matrices and Z and R are four-component 
column vectors, as defined previously. 

Solution procedure 

The solution of the block tridiagonal system, equations (26), (39) and (40), is accomplished using 
L-U decomposition with partial pivoting in the blocks, exactly the same procedure as used in 
Reference 19. A more complete discussion of the matrix solution method is given in References 20 
and 22. 

The convergence criterion, applied to the corrections at each nodal point for station i ,  is 

1g~+' ) -g~)1=16g~)I~110-8 ,  i < j < N + I ,  

for g equal tof, u, G and p. The block tridiagonal solution process is repeated at a streamwise 
station i, updating the solution variables with each iteration until the above criterion is met. 

The transformed psuedo-self-similar form of the equations allows the solution procedure to be 
self-starting. Typically, the solution is started from either a flat plate or stagnation point flow, at 
which point the governing system reduces to ordinary differential equations. 

As an initial guess to the starting solution, a fourth-order Pohlhausen polynomial is used to 
approximate the self-similar profiles of the solution variables. With the initial conditions provided 
by the Pohlhausen polynomial, the starting solution is obtained by solving the ODE system with 
the standard block method. This procedure can also be used to obtain any Falkner-Skan self- 
similar solution. If a non-similar solution is to be obtained, two-point backward differences, to 
approximate the (-derivatives, are used for the second station. Past the second streamwise station, 
three-point backward differences are ordinarily used. 

Calculation of the edge velocity 

An accurate method of determining the edge velocity is important, since ue is an important 
characteristic of the boundary layer flow and would be required if the present method were 
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extended to a turbulent boundary layer or a viscous-inviscid iteration procedure. The edge 
velocity cannot, however, be determined directly from the solution procedure. For this formu- 
lation, u, must be obtained through- an integration of the solution variables. 

The pressure gradient parameter is defined by equation (9). Noting that this is a double 
logarithmic derivative, equation (9) can be recast as 

$fi=d(lnu,)/d(lnt). (41) 
Rearranging and integrating this result over the numerical interval i -  1 to i yields 

in(ue,/uei+ , I= -  Pd(ln 4). 
2 si i - 1  

The right-hand side of this result may be approximated using the trapezoidal integration rule. The 
edge velocity at station i is then obtained from 

u e i  = uei - , er, (424 

r =i(fi(i.) + p i -  In (ti/& - (42b) 

where 

The determination of ue is problematical for a non-similar flow beginning with a stagnation 
point. To calculate subsequent edge velocity values, the value of u, at i = 2 must be input directly or 
estimated. This curious behaviour at the second streamwise station is due to the double 
logarithmic form of the pressure gradient definition. 

The reason for this behaviour is apparent if the flow near the stagnation point is assumed 
to behave like a wedge Then the edge velocity is an exponential function of x such that 
(for p= 1) 

u = &/(2 -m = cx. 

The constant c cannot be determined without specifying the body shape because of the pseudo- 
self-similar character of the flow. A similar observation was made by Bradshaw et who noted 
that it is necessary to provide the slope c near the stagnation point. 

RESULTS 

Numerical results for three laminar cases are presented using the present unified approach. These 
cases provide a test for all the direct and inverse formulations presented here. All calculations were 
made using a constant streamwise step size and a normal co-ordinate distribution determined by a 
geometric progression. 

Howarth flow 

has become a 
well known test case for boundary layer computations and is included here mainly as a test for the 
direct method since no separation data are available. A tabular comparison of dimensionless wall 
shear values obtained by the present method and results from References 1, 26 and 27 are 
presented in Table I. The agreement is quite good, with the present method predicting separation 
at the same location as the above references. 

A boundary layer with linearly decreasing edge velocity, the Howarth 
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Table I. Accuracy of direct method for Howarth flows 

X 

~ 

0.1 
0.2 
0.3 
0.4 
0.5 
0-6 
0.7 
0.8 
0.88 
0.9 
0.92 
0.94 

Xsep 

Dimensionless wall shear (r,JpU$)J(Re) 
~~ ~ 

Present method 

0.968754 
0.626548 
0462782 
0.357322 
0.279267 
0-21 6228 
0.161 698 
0.110977 
0.069006 
0.057389 
0.044675 
0.029862 

0.96 

Howarth26 Smith-Clutter' Cebeci-SmithZ7 

0968382 - 0968524 
0.626496 0626249 0.626392 
0.462801 - 0.462645 
0.375442 0.357301 0.357197 
0.279307 - 0.279 150 
0.2 16728 - 0.216119 
0.162281 - 0.16 1602 
0 1  11369 0.111516 0.1 109 18 

0.068963 
0.057629 - 0.057228 
- 0.045254 0.044295 

0.028807 

- 0.068942 

- __ 

096 096 0.96 

Horton's parabolic wall shear distribution 

of small separation. His distribution of transformed wall shear is given by 
Horton" devised a parabolic distribution off: to test the boundary layer equations in regions 

S(<)=0.4696(1-<)(1-0.52649t), < > O .  

Separation occurs at l= 1, with reattachment at <= 1.9. Because of its simplicity and the existence 
of a small separation bubble, this case was used as a test for all of the inverse options. The 
transformed wall shear method was used to generate input data for the other runs. 

Figure 1 compares Horton's computational data with three inverse options (specifyingf;, $* 
and CfeJ(Re)) from the present study. The agreement among all resullts is very good, although 
the displacement thickness run displays a slightly different trend from the other cases. 

Two interesting discoveries were made while obtaining the displacement thickness runs. These 
were that accurate results could not be obtained without increasing the value of q m  obtained from 
the wall shear cases by 1&15%, and that two-point backward differences were necessary (rather 
than the usual three-point differences) over the (-interval where the flow separates. The 
requirement of increasing q m  indicates a finer sensitivity of the displacement thickness method to 
the location of the boundary layer edge. Oscillations in the normal velocity V occurred when the 
separated case was run using three-point backward differences for the entire domain. The cases 
where wall shear or skin friction coefficient distributions were specified did not exhibit these 
oscillations. 

Figure 2 compares the computed 6*J(Re) distribution from the inverse option specifying f ;  
with the computational data of Horton. The agreement is exceptionally good, with essentially no 
deviation between the two curves. 

Analytic displacement thickness distribution 

Carter' developed an algebraic distribution of the untransformed displacement thickness 
6*J(Re) which matches the flat plate displacement thickness at the start and end of the 
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0 

-0.02 

-0.04 

-0.06 

-0.08 

-0.10 

-0.12 

-0.14 

-0.16 

-0.18 

-0. a 

-0.22 

-0.24 

+ HORTON (1974) 

B 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 
c 

Figure 1. Comparison of pressure gradient parameter B from present inverse methods with Horton'O 

- f; SPECIFIED 

+ HORTON (1974) 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 
E 

Figure 2. Comparison of scaled displacement thickness 6*,/(Re) with Horton'' 
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distribution and reaches a maximum at a specified interior location. Carter uses this distribution 
to test a forward-marching scheme with FLARE its well as a global iteration scheme. Cebeci et aL7 
use the same distribution to test a marching solution with the iterative DUIT procedure for 
separation bubbles. The distribution is given in Reference 7. Two maximum values of displace- 
ment thickness are considered here, 6*J(Re) = 5 6  and 8.6, the same values cited in the above 
references. 

The skin friction distribution resulting from the inverse option specifying 6*J(Re) is compared 
with the computational results of Carter' and Cebeci et aL7 in Figure 3. The agreement within the 
region of separation is particularly good, with the present method matching the global iteration 
results of Carter and the DUIT procedure of Cebeci et al. more closely than the forward-marching 
results presented by Carter. Figure 4 compares the edge velocity distribution for the same case 
with the global iteration results of Carter. Again the comparison is quite good, although the 
present solution overshoots the downstream flat plate value. The present prediction approaches 
the downstream flat plate value more closely as the streamwise step size is reduced. 

For the more severe displacement thickness case, h*,/(Re) = 8.6, two-point backward differ- 
ences had to be used in the separation bubble to obtain an accurate solution. A comparison of 
Cfm , / (Re )  distributions is made in Figure 5. Again the results are compared with those of Carter 
and Cebeci et al. The results compare well, although the overshoot behaviour is still evident. 
Decreasing the streamwise step size greatly increases the accuracy at the most negative value off:. 
The edge velocity distribution from the same inverse runs is compared with Carter's global 
iteration results in Figure 6. Here, the present calculations fall slightly below the results of Carter. 
The overshoot behaviour is very apparent downstream of x = 1.6, shifting the minimum value of u, 
upstream approximately 0.05 units. 

The suspected cause of the overshoot behaviour is streamwise discretization error. To study this 
effect, the number of streamwise points was doubled. Figure 7, which compares the specified 

0 FORWARD MARCHING 
A GLOBAL ITERATION } :t!;;; 7 
+ DIJIT-CEBECI et. al. 11979) I 

i 
X 

Figure 3. Comparison of C,_J(Re) from present method with References7 and 13 for 6Zax= 8.6 
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displacement thickness with that calculated by the present shear method, shows the marked 
improvement obtained with the decrease in streamwise step size. The previous figures also 
demonstrate this effect. 

DISCUSSION 

Inverse wall shear methods 

In the present investigation, three different inverse formulations for boundary layer flows have 
been studied. It should be noted that, aside from Horton,"? this study is the only one known to 
the authors which formulates the inverse problem in full (streamwise and normal) Levy-Lees co- 
ordinates for separated flow. This study differs from those of Horton in the discretization and 
solution procedure followed once the equations are cast in psuedo-self-similar form. 

The transformed wall shear method proved to be the most straightforward of the inverse 
formulations, requiring only an easily implemented boundary condition at the wall. This problem 
was covered in detail in Reference 18. The methods where the skin friction coefficients CfO,/(Re)  
and Cfm , / (Re) are specified are of more practical importance. These methods required the 
development of specialized boundary conditions as discussed earlier in this paper. The use of these 
boundary conditions, which relate the quantities 5 and u, to the pressure gradient parameter 
correction, is necessary to accelerate the convergence of the solution. The careful linearization of 
the boundary conditions was found to be very important to both the accuracy of the method and 
the rate of convergence. Without the linearized form of these conditions, convergence is achieved 
typically only after ten or more iterations. Proper linearization allows quadratic convergence to be 
maintained. 

The wall shear formulations experience a problem with some separated flows. Flows which 
decelerate rapidly from positive to significant negative values off: over a small streamwise 
distance cause the solution method to fail. This behaviour was observed when the shear methods 
were applied to the algebraic displacement thickness test problem of Carter.I3 

Upon examining the distributions of stream functionfand velocity u across the boundary layer, 
an additional reflex in the stream function profile was found near the wall. This evidently leads to 
oscillations in the solution. A comparison of an incorrect profile off near the wall with a correct 
profile for a similar separated region is shown in Figure 8. This failure seems to be inherent in the 
use of splines in combination with the boundary conditions applied at the wall for the shear 
formulations. 

Based upon a comparison of results from the wall shear and displacement thickness methods, it 
is clear that an inherent difference in the formulation is responsible for the displacement thickness 
method's success in calculating regions of separation and the wall shear method's failure. This 
difference is in the form of the wall boundary conditions for the two methods. The wall boundary 
conditions for the wall shear methods only involve the variables 1; u and G at j=  1, with no 
dependence on j=  2. Only the condition on B involves values at both j=  1 and j=2, but this 
condition has no effect on the profiles off; u and G. 

The displacement thickness case does include a two-point spline boundary condition at the wall 
which links the values off, u and G at points j=  1 and j= 2. This condition apparently forces the 
splines to behave in the correct manner near the wall when the flow separates, since the 
displacement thickness case was used successfully on all occasions. The lack of this two-point 
condition in the wall shear method allows the splines to 'wiggle' near the wall. This phenomenon 
seems to occur when the value of fi exceeds some undetermined limit near or following 
separation. This conclusion is based upon observed behaviour of the test cases. The methods also 
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Figure 8. Comparison of incorrect and correct psuedo-self-similar stream function profiles near the wall 

seem to fail when the backflow velocities become larger than 1% of the edge velocity. The 
inclusion of the two-point boundary condition for the displacement thickness method may also be 
the reason this method can handle separated zoiies with values off; much larger (more negative) 
than the wall shear methods can tolerate. This explains why the wall shear methods perform well 
for mild cases, such as the Horton parabolic distribution, but fail for other problems, such as the 
separation bubble generated by Carter's analytical distribution of displacement thickness. 

In the current formulation it is not possible to incorporate a two-point spline condition at the 
wall for the wall shear methods. Considering the conditions that exist at the wall, only the 
condition on f i  may be transferred to the outer edge, since the homogeneous conditions on f and u 
must remain at the wall, as must the inverse condition itself. Unfortunately, it was found that 
transferring the two-point condition on f i  to the far field produced oscillations there which 
occurred for attached and separated flow conditions and which significantly decreased marching 
distance. The conclusion is that for the present formulation the required two-point wall boundary 
condition, which would allow the wall shear methods to accurately handle larger regions of 
separation, cannot be implemented. 

Despite the inability of the wall shear methods to handle larger regions of separation, the 
methods have proven to be very accurate for mild separated regions and for attached flows. It 
should also be pointed out that this limitation may be eliminated by switching from the use of 
fourth-order splines to a standard finite difference scheme. 

Inverse displacement thickness method 

The displacement thickness formulation proved to be the most successful of the inverse methods 
implemented in this study. This method provided reliable results for all cases, including those 
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which proved to be too severe for the wall shear methods. This is apparently due to the use of two- 
point spline conditions implemented at the wall, as discussed previously. 

Several interesting observations were made during the use of the displacement thickness 
method. On several occasions a mild streamwise instability was noted when three-point backward 
differences were used. This instability was first noticeable through oscillations in the calculated 
normal component of velocity, which is dependent on&. For these cases it was necessary to 
switch to two-point backward differences over the region where separation was present. The use of 
two-point backward differences yields accurate solutions through separation without difficulty. 

Another unexpected observed behaviour was overshoot of the solution following reattachment 
for the Carter analytic displacement thickness cases. The calculations should return to a flow with 
a near-zero pressure gradient, as for a flat plate. For the cases run, the calculations produce a flow 
which continues to accelerate following reattachment, overshooting the flat plate value of 
6*J(Re). The overshoot problem, while present for both displacement thickness distributions, is 
much more pronounced for the more severe distribution. 

The suspected cause of this behaviour is streamwise discretization error, which is aggravated by 
the use of two-point backward differences. As a check, the streamwise step size was halved, as 
discussed in the Results section. These calculations show a marked improvement over the initial 
calculations, although the overshoot behaviour is still noticeable. The convergence behaviour of 
the present method was proven to be sensitive to accelerating flows, however, and this sensitivity 
may be the cause of the remaining discrepancies. 

Direct method 

The direct solution option of the present boundary layer formulation was tested using the 
Howarth flow as well as other standard test problems discussed in Reference 20. The method 
performed well for all test cases, with quadratic convergence consistently observed. Three to four 
iterations were typically needed at each streamwise station to converge the solution. Upon 
reaching negative values off:, the solution diverged as expected. 

The present direct method is interesting, since only two boundary conditions must be changed 
to switch the solution procedure from inverse to direct mode. To obtain a direct solution with the 
present formulation, p is specified and the inverse condition discarded. The direct method retains 
the 4 x 4 block structure of the inverse methods, with the mechul function equation on /? simply 
becoming a ‘dummy’ equation. This suggests that the solution procedure could be easily switched 
from direct to inverse mode during calculations, although this was not attempted during the study. 

Boundary conditions 

Throughout the investigation, the methods developed have proven to be very sensitive to the 
boundary conditions. A prime example is the wall shear method for certain backflow conditions, 
as discussed previously. This behaviour was completely unexpected, since the boundary condi- 
tions applied at the wall are quite typical, except for the inverse condition. The use of the splines, 
however, is not typical. 

Unexpected results related to the twa-point spline relations were observed in other situations 
aside from the behaviour of the wall shear methods in separated flows. The oscillations produced 
by transferring the two-point condition on p from the wall to the far field are another instance of 
such behaviour. Although the boundary condition was expected to be satisfactory at the far field, 
the resulting oscillations caused the solution to diverge. Similar behaviour was observed for the 
boundary conditions in the direct method. 
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In all instances, the solution behaviour was found to be extremely sensitive to the particular 
implementation of the two-point spline relations. Often it was found that one condition adversely 
affected the solution while another provided accurate results, although both were expected to be 
adequate. The cause of this sensitivity is unclear from the results of the current investigation. 

Pivoting 

The present direct and inverse methods erhploy partial pivoting in the L-U decomposition to 
prevent the build-up of round-off errors. In an effort to determine whether an ideal ordering of the 
equations exists, the pivoting indices in the block matrix solver were observed during solution of a 
non-similar boundary layer flow. By checking these indices, it is possible to determine the pivoting 
elements of the L-U decomposition procedure. If the decomposition routine pivots consistently 
about the same elements, an ideal order of the equations is implied. 

The check of the pivoting indices, however, shows no such consistency. Not only does the 
pivoting order change continually across the boundary layer, but it also changes as the solution 
proceeds downstream. This indicates that no predetermined order of the equations exists. Thus, 
regardless of the equation ordering, pivoting is an essential process for obtaining an accurate 
solution with the present formulation. 

CONCLUDING REMARKS 

A unified approach to calculating direct and inverse solutions for two-dimensional boundary 
layers has been presented. By a simple intercharge of boundary conditions, the method is capable 
of providing a direct solution, with a pressure distribution specified, or one of several inverse 
solution options, depending upon the specification of wall shear, skin friction coefficient or 
displacement thickness distributions. A modified form of the mechul function method is used to 
obtain the inverse solutions. Spline/finite difference discretization yields a fully implicit scheme 
which converges quadratically when proper linearization is applied. 

Although the method usually performs quite well, it was discovered that the wall shear/skin 
friction coefficient options do not converge properly for separation regions with backflow 
velocities greater than 1% of the edge velocity. This behaviour is due to the nature of the splines, 
combined with the lack of the sufficiently strong two-point boundary condition at the wall for the 
shear options. Without proper control through the wall conditions, the splines allow oscillations 
in the solution profiles in regions of separation. The displacement thickness option, which does 
employ a strong wall boundary condition, is capable of treating regions of separation with larger 
backflow velocities (approximately 10% of the edge velocity). 

The solution procedure is also sensitive to the use of the three-point backward differences, 
sometimes requiring the use of two-point backward differences for accurate results. This 
sensitivity appears mainly during the calculation of separated regions and is manifested by 
oscillations in the normal component of velocity. This sensitivity was also noted during the 
application of various forms of the two-point spline boundary conditions, with the most severe 
case occurring in the wail shear options. Here the sensitivity prohibits the use of the wall shear 
methods in separation regions which are not extremely mild. This sensitivity in the use of 
backward differences also appears in the overshoot noted with the analytic displacement thickness 
distributions. The behaviour of the method here is unsatisfactory and requires further investi- 
gation to eliminate any grid dependence. It should be noted, however, that grid-dependent 
behaviour was not observed elsewhere during the investigation. 

These conclusions warrant further research into the use of the splines for regions of separation. 
It should be noted, however, that the spline formulation performed excellently in many instances, 
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yielding very accurate results with a minimum of grid points. The successful use of spline 
discretization for solutions involving reserved flow is tied to the use of strong two-point boundary 
conditions at the wall. Satisfactory results have been obtained only when such a condition is 
implemented. Unfortunately, this form of boundary condition is sometimes difficult to apply. To 
shed further light on the formulation and its problems, a complete stability analysis should be 
performed to determine the source of the encountered instabilities. While the present study 
indicates further work is required to resolve inadequacies in this method, the authors believe the 
investigation provides important information in obtaining boundary layer solutions with a 
unified algorithm. 
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APPENDIX: NOMENCLATURE 

4 x 4 block tridiagonal coefficients 
skin friction coefficient = tw/iprefu:ef 
spline derivative approximation for a2g/8q2 
reference length 
number of intervals in normal direction 
column vector of known quantities 
reference Reynolds number = pmumL/pm 
Reynolds scaled normal velocity component 
Reynolds scaled normal co-ordinate 
column vector of solution variable corrections 
psuedo-self-similar stream function 
normal step size in q 
spline derivative approximation for i3g/aq 
pressure 
untransformed streamwise and normal velocity components 
untransformed streamwise and normal co-ordinates 
boundary layer displacement thickness 
transformed displacement thickness 
correction for variable g 
wall shear 
fluid density 
dynamic viscosity 
kinematic viscosity 
stream function 
Levy-Lees streamwise and normal co-ordinates 
streamwise pressure gradient parameter 
FLARE coefficient 

Subscripts 

e edge value 
i, i splinelfinite difference nodal points 
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W wall value 
03 reference/freestream value 
t - 9  r streamwise and normal partial derivatives 

Superscripts 

n iteration level 
* dimensional quantity 
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